
Previous Article
Dynamics of an SIS reactiondiffusion epidemic model for disease transmission
 MBE Home
 This Issue

Next Article
Evolution of dispersal and the ideal free distribution
Structured populations with diffusion in state space
1.  School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, United States 
[1] 
Rong Liu, FengQin Zhang, Yuming Chen. Optimal contraception control for a nonlinear population model with size structure and a separable mortality. Discrete & Continuous Dynamical Systems  B, 2016, 21 (10) : 36033618. doi: 10.3934/dcdsb.2016112 
[2] 
Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusionconvection equation: Dynamical system approach. Discrete & Continuous Dynamical Systems  B, 2010, 14 (3) : 11191138. doi: 10.3934/dcdsb.2010.14.1119 
[3] 
Inwon C. Kim, Helen K. Lei. Degenerate diffusion with a drift potential: A viscosity solutions approach. Discrete & Continuous Dynamical Systems, 2010, 27 (2) : 767786. doi: 10.3934/dcds.2010.27.767 
[4] 
Xing Liang, Lei Zhang. The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration. Discrete & Continuous Dynamical Systems  B, 2021, 26 (4) : 20552065. doi: 10.3934/dcdsb.2020280 
[5] 
Philippe Laurençot, Christoph Walker. The fragmentation equation with size diffusion: Small and large size behavior of stationary solutions. Kinetic & Related Models, , () : . doi: 10.3934/krm.2021032 
[6] 
Iryna Pankratova, Andrey Piatnitski. Homogenization of convectiondiffusion equation in infinite cylinder. Networks & Heterogeneous Media, 2011, 6 (1) : 111126. doi: 10.3934/nhm.2011.6.111 
[7] 
Vitali Vougalter, Vitaly Volpert. On the solvability conditions for the diffusion equation with convection terms. Communications on Pure & Applied Analysis, 2012, 11 (1) : 365373. doi: 10.3934/cpaa.2012.11.365 
[8] 
Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure & Applied Analysis, 2015, 14 (5) : 20952115. doi: 10.3934/cpaa.2015.14.2095 
[9] 
Md. Rabiul Haque, Takayoshi Ogawa, Ryuichi Sato. Existence of weak solutions to a convection–diffusion equation in a uniformly local lebesgue space. Communications on Pure & Applied Analysis, 2020, 19 (2) : 677697. doi: 10.3934/cpaa.2020031 
[10] 
Iryna Pankratova, Andrey Piatnitski. On the behaviour at infinity of solutions to stationary convectiondiffusion equation in a cylinder. Discrete & Continuous Dynamical Systems  B, 2009, 11 (4) : 935970. doi: 10.3934/dcdsb.2009.11.935 
[11] 
Suman Kumar Sahoo, Manmohan Vashisth. A partial data inverse problem for the convectiondiffusion equation. Inverse Problems & Imaging, 2020, 14 (1) : 5375. doi: 10.3934/ipi.2019063 
[12] 
Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion  convection equation related with gas dynamics. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 35753589. doi: 10.3934/dcds.2014.34.3575 
[13] 
Chunpeng Wang, Yanan Zhou, Runmei Du, Qiang Liu. Carleman estimate for solutions to a degenerate convectiondiffusion equation. Discrete & Continuous Dynamical Systems  B, 2018, 23 (10) : 42074222. doi: 10.3934/dcdsb.2018133 
[14] 
Dongxue Yan, Xianlong Fu. Longtime behavior of a sizestructured population model with diffusion and delayed birth process. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021030 
[15] 
Song Liang, Yuan Lou. On the dependence of population size upon random dispersal rate. Discrete & Continuous Dynamical Systems  B, 2012, 17 (8) : 27712788. doi: 10.3934/dcdsb.2012.17.2771 
[16] 
Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete & Continuous Dynamical Systems  B, 2009, 11 (3) : 563585. doi: 10.3934/dcdsb.2009.11.563 
[17] 
Genni Fragnelli, A. Idrissi, L. Maniar. The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete & Continuous Dynamical Systems  B, 2007, 7 (4) : 735754. doi: 10.3934/dcdsb.2007.7.735 
[18] 
Abdelaziz Rhandi, Roland Schnaubelt. Asymptotic behaviour of a nonautonomous population equation with diffusion in $L^1$. Discrete & Continuous Dynamical Systems, 1999, 5 (3) : 663683. doi: 10.3934/dcds.1999.5.663 
[19] 
Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a timefractional diffusionconvection equation for image restoration. Discrete & Continuous Dynamical Systems  S, 2018, 11 (1) : 103117. doi: 10.3934/dcdss.2018007 
[20] 
Zhijie Cao, Lijun Zhang. Symmetries and conservation laws of a time dependent nonlinear reactionconvectiondiffusion equation. Discrete & Continuous Dynamical Systems  S, 2020, 13 (10) : 27032717. doi: 10.3934/dcdss.2020218 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]